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Carnosine: can understanding its actions on
energy metabolism and protein homeostasis
inform its therapeutic potential?
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Abstract

The dipeptide carnosine (β-alanyl-L-histidine) has contrasting but beneficial effects on cellular activity. It delays
cellular senescence and rejuvenates cultured senescent mammalian cells. However, it also inhibits the growth of
cultured tumour cells. Based on studies in several organisms, we speculate that carnosine exerts these apparently
opposing actions by affecting energy metabolism and/or protein homeostasis (proteostasis). Specific effects on
energy metabolism include the dipeptide’s influence on cellular ATP concentrations. Carnosine’s ability to reduce
the formation of altered proteins (typically adducts of methylglyoxal) and enhance proteolysis of aberrant
polypeptides is indicative of its influence on proteostasis. Furthermore these dual actions might provide a rationale
for the use of carnosine in the treatment or prevention of diverse age-related conditions where energy metabolism
or proteostasis are compromised. These include cancer, Alzheimer's disease, Parkinson's disease and the
complications of type-2 diabetes (nephropathy, cataracts, stroke and pain), which might all benefit from knowledge
of carnosine’s mode of action on human cells.
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Carnosine and cellular ageing
In 1994, McFarland and Holliday demonstrated that when
the naturally-occurring dipeptide, carnosine (Figure 1),
was added to cultures of primary human fibroblast cells,
chronological lifespan was increased; the onset of senes-
cence was effectively delayed in these cells [1]. Carnosine
addition was also observed to rejuvenate already senescent
cells, giving them a more juvenile appearance [1]. Para-
doxically, a subsequent study revealed that carnosine
selectively inhibited the growth of cancer cells, at least in
culture [2]. Since explanatory mechanisms for these seem-
ingly opposing effects are still unknown, carnosine has
been called enigmatic [3].
Carnosine (β-alanyl-L-histidine) was discovered over

100 years ago (see [4] for a historic account). It occurs nat-
urally in the brain, kidney and skeletal muscle of fish, birds
and mammals at concentrations sometimes as high as
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100 mmol kg-1 dry muscle mass [5]. Functionally carnosine
appears to be pluripotent as there is evidence that it can
scavenge reactive oxygen species (ROS) [6] and reactive ni-
trogen species (RNS) [7], can form adducts with deleteri-
ous aldehydes and ketones [8-11] and can act as a metal
ion chelator [12] and hydrogen ion buffer [13]. Carnosine
has also been demonstrated to affect gene expression [14],
protein phosphorylation [15] and, possibly, mRNA transla-
tion initiation through the regulation of the eukaryotic ini-
tiation factor 4E protein (eIF4E) [16]. Despite this range of
properties, the actual physiological function of carnosine
remains unknown.
The addition of carnosine to cells has been shown to

result in three outcomes that are characteristic of long-
lived model systems [17]. These are decreased glycolysis,
increased mitochondrial activity and suppression of
proteotoxicity [17]. While these observations may hint
at which of carnosine’s diverse properties are responsible
for increasing chronological lifespan, any mechanistic ra-
tionale must also account for carnosine’s selective tox-
icity towards tumour cells. In this review, we discuss
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Figure 1 (A) Structure of L-carnosine, the dipeptide β-alanyl-L-
histidine; (B) structure of methylgloxal (2-oxopropanal).
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mechanisms that could accommodate the uniquely dis-
parate effects of carnosine on cellular activity.

Carnosine and changes in energy metabolism
Tumour cells, carnosine and glycolysis
The metabolism of tumour cells is characteristically shifted
towards cytosolic glycolysis [18,19], as first reported by
Otto Warburg [20]. However, respiratory activity is not ne-
cessarily compromised [21,22] and has recently been pro-
posed to be central to cancer progression [23]. Consensus
has yet to be reached on the reasons for these complex
metabolic switches, but the high energy and macromolecu-
lar precursor demands of rapidly growing tumours may
provide an explanation [24]. We speculate that carnosine’s
effects on tumour cells might be explained, in part, by its
action on glycolysis (Figure 2). For example, whilst inves-
tigating the influence of carnosine on cultured brain
tumour cells, Gaunitz and co-workers discovered that its
addition inhibited cell growth due to the large decline in
glycolytically-synthesized ATP [25,26]. Our own study in
yeast (which can be used to model cancer cells [24]) led to
the conclusion that carnosine may affect glycolysis [27];
addition of carnosine to yeast growing on glucose as sole
carbon source, where the majority of ATP is generated
from glycolysis, caused up to 20% cell death and a de-
creased overall growth rate. In contrast, cells growing
aerobically on glycerol as sole carbon source were not
inhibited by the addition of carnosine and showed an
increased growth rate. Because glycerol is normally metab-
olized via dihydroxyacetone phosphate (DHAP) and glycer-
aldehyde 3-phosphate (G3P), these observations could
support an interpretation that carnosine inhibits glycolysis
prior to the formation of these triose phosphates from their
glycolytic precursor, fructose 1,6-bisphosphate (Figure 2).
Unfortunately there is no evidence in the literature to

demonstrate a direct effect on glycolysis by carnosine.
However, in 1980, in vitro experiments on rabbit muscle
demonstrated that both carnosine and histidine stimulate
the activity of fructose 1,6-bisphosphatase (FBPase), which
converts fructose 1,6-bisphosphate to fructose 6-phosphate
[28] (Figure 2). The mechanism of this stimulation is un-
known but, in the case of carnosine, could potentially be
due to its ability to chelate the metal ions (such as Zn2+

and Mg2+ [12]), that regulate glycolytic enzymes [29]. For
example, if carnosine addition were to activate FBPase
in vivo by chelating Zn2+ [28], this would create a futile,
ATP-consuming cycle since the ATP-utilizing enzyme
phosphofructokinase converts fructose 6-phosphate into
fructose 1,6-bisphosphate (Figure 2). This cycle would de-
crease ATP levels and ATP synthesis as well as decreasing
the supply of carbon skeletons for amino acid synthesis.
While this hypothesis is inconsistent with the fact that
addition of histidine does not result in the death of
glucose-grown yeast cells [27], it remains conceivable that
carnosine’s metal-chelating properties influence the func-
tion of one or more glycolytic enzymes.

Carnosine and the metabolism of ageing cells
The metabolic shifts that occur as organisms grow, ma-
ture and finally age are complex and incompletely under-
stood. When rapid growth ceases, in the transition to
adulthood, the preferred pathway for ATP generation
changes from glycolysis to oxidative phosphorylation [17].
However, one hallmark of cellular ageing is increased
mitochondrial dysfunction; this frequently leads to cells
reverting to glycolysis for ATP generation [30]. Conse-
quently, it is likely that a subtle balance in the regulation
of glycolysis and oxidative phosphorylation is critical
throughout the lifespan [31].
Literature reports indicate that post-mitotic, adult

(and therefore typically less glycolytic) cells have higher
carnosine concentrations than actively-dividing cells, al-
though the reasons for this tendency are unknown. For
example, during murine brain development, carnosine
synthesis is only associated with the final stages of glial
cell maturation [32]. Carnosine is also present only in
post-mitotic retinal neurones [33] when energy metabol-
ism switches from glycolysis to oxidative phosphoryl-
ation [31]. In children, muscle carnosine levels are
initially quite low (30–40 mg%) at 5 years of age but, as
they grow, gradually increase to 120–140 mg% at 14 -
years of age [34,35] before declining and reaching a plat-
eau in adulthood. Together these observations might
suggest that carnosine is beneficial to adult cells (which
employ oxidative phosphorylation for ATP generation),
whereas in growing cells (which employ glycolysis to
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Figure 2 An overview of glycolysis by which the conversion of glucose to pyruvate is coupled to the production of ATP for energy
and NADH for biosynthesis. The entry of glycerol into the glycolytic pathway is also shown. The scheme indicates the hypothetical action of
carnosine in the activation of fructose 1,6-bisphosphatase to create a futile, ATP-consuming, cycle which also inhibits glycolytic ATP generation.
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provide metabolic precursors and ATP), carnosine could
even be detrimental. However, contrary to this sugges-
tion, carnosine concentrations are higher in fast-twitch,
glycolytic muscle than in slow-twitch, aerobic muscle
[36]; this observation argues against the proposition
that carnosine is more beneficial to aerobic cells than
those that employ glycolysis to synthesize ATP. While
any correlation between carnosine concentrations and
metabolic state is unlikely to be clear cut, it has been
suggested that high carnosine levels in adult (but not
senescent) glycolytic tissue are required to maintain pH
by buffering the high amounts of protons produced as a
consequence of glycolytic activity (e.g. through lactic
acid formation) and to combat the potentially deleteri-
ous by-products of glycolysis such as methylglyoxal
(MG; Figure 1) [9].
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It has also been noted that addition of carnosine to cul-
tured rat fibroblasts strongly stimulates synthesis of the
cytoskeletal protein, vimentin [14]; vimentin is closely, but
not exclusively, involved with mitochondrial movement
and localization [37]. Carnosine has also been observed to
have a beneficial but unspecified organisational effect to-
wards mitochondria [38]. One possibility is that the stimu-
lation of vimentin synthesis by carnosine may in turn
assist mitochondrial synthesis and intracellular targeting
in ageing cells. These observations might support an inter-
pretation that carnosine is associated with the metabolic
rewiring that occurs when rapid growth declines and fi-
nally ceases, a change that is often accompanied by
decreased glycolysis and increased mitochondrial activity.
If carnosine were to positively influence mitochondrial
development or activity, and also provide protection
against deleterious glycolytic by-products (e.g. MG, espe-
cially following the reversion to glycolysis resulting from
age-related mitochondrial damage in senescent tissues),
this might help to explain the dipeptide's rejuvenating
effects on senescent cultured human fibroblasts [1]; cur-
rently, this hypothesis remains to be tested.

Carnosine and age-related changes in proteostasis
Increased proteolytic activities (autophagic and proteasomal
[39,40]) and the up-regulation of one or more heat shock
and/or chaperone proteins are associated with lifespan ex-
tension in yeast [41], birds and mammals [42]; they help to
maintain proteostasis by degrading altered proteins. Con-
versely, the accumulation of altered proteins (proteostatic
dysfunction) is a major hallmark of ageing [43]. MG
(Figure 1) is a well-characterized α-ketoaldehyde whose
toxic effects on cells and tissues closely mimic those of the
ageing process. When serum glucose levels are raised, MG
is increased [44] and is increasingly regarded as a major
source of age-related protein damage and proteoxicity
[45,46] as it can form adducts, known as advanced
glycation end-products (AGEs; Figure 3), with lysine,
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Increased formation of MG may also arise via the polyol
pathway [47], which also generates glyceraldehyde and
DHAP. If not immediately metabolized to 1,3-bisphos-
phoglycerate, these trioses spontaneously decompose into
MG (Figure 3). Carnosine’s ability to scavenge reactive spe-
cies such as MG (and others such as malondialdehyde, a
lipid peroxidation product) is well documented [8,9,17,48]
and might explain the dipeptide’s ability to delay cellular
senescence.
There is evidence that carnosine, either as the free di-

peptide or when complexed with zinc ions (so-called
polaprezinc), can induce expression of the heat shock pro-
teins, Hsp 27 [49] and Hsp70/72 [50]. Other studies have
also demonstrated that carnosine can stimulate a cytosolic
protease [51] or indeed proteolysis of long-lived proteins
in senescent cultured human fibroblasts [52]. Although
these findings (some preliminary) seem to suggest that
carnosine might help to maintain proteostasis, further
experimentation is required to confirm this hypothesis.
The stimulation of vimentin synthesis in cultured rat

fibroblasts by carnosine [14] may be relevant in this con-
text as well. Vimentin has been suggested to participate in
the formation of aggresomes into which protein aggre-
gates are sequestered, especially when proteasomal activity
is inhibited [53]; it has been proposed that vimentin forms
a cage surrounding the target protein (which is frequently
ubiquitinated) [54]. The enzyme, oxidized protein hydro-
lase (OPH), is co-expressed with vimentin [55] raising the
possiblity that OPH and vimentin co-operate to form
aggresomes, which, together with proteasomes, facilitate
the disposal of oxidized proteins [55] and thereby help to
maintain proteostasis (Figure 4).
Recent studies have confirmed the view that mainten-

ance of proteolytic function is important for regulating
energy metabolism: 6-phosphofructo-2-kinase/fructose
2,6-bisphosphatase (Pfkfb3), which generates fructose
2,6-bisphosphate, is subject to continuous proteasome-
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mediated degradation following its ubiquitination [56,57].
However, if degradation of Pfkfb3 is inhibited, glycolysis is
stimulated and oxidative stress results [56]; in neurones
this provokes cell death [57]. Possible explanations for
these findings are a reduced pentose phosphate pathway
metabolism and/or increased MG formation following in-
creased triose phosphate formation. Collectively these
observations illustrate how proteostatic dysfunction can
directly impact energy metabolism and vice versa [58];
excess MG formation may compromise the function of
the ubiquitin/proteasome system [44], illustrating the de-
licate interdependence between energy metabolism and
proteostasis.

The therapeutic potential of carnosine
As carnosine may possess activities that suppress
age-related dysfunction in either energy metabolism or
proteostasis [17], it has been proposed as a potential
therapeutic agent [see [59] for recent review]. Indeed
carnosine may resemble other naturally-occurring agents,
such as resveratrol, that possess similar pluripotency [60]
and therefore have the potential to be used as “smart
drugs” that simultaneously act on multiple targets [61].
Carnosine is also well-documented to have antioxidant
properties (see [4] for more information): it can scavenge
reactive oxygen species such as hydroxyl radicals, super-
oxide and singlet oxygen [62]. Moreover, carnosine can
chelate the heavy metals that cause cellular damage [63].
These properties protect macromolecules, such as lipids,
proteins and DNA, from the damage which results in age-
ing and age-related disease [64].
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Figure 4 The possible effects of carnosine on the formation and cata
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While there are no current reports of clinical trials
concerning carnosine’s affects towards clinically-defined
age-related dysfunction, it was recently reported that
carnosine improved cognition in schizophrenics [65]. In
senescence-accelerated mice, a diet supplemented with
carnosine decreased the signs of ageing and increase
mean lifespan by 20% [66].

Cancer
The ability of carnosine to suppress the growth of
tumour cells has recently been reviewed [67], one pos-
sible mechanism being its inhibition of energy metabol-
ism. Consistent with this is the finding that carnosine
inhibits glycolytic ATP generation [25], although the
mechanistic details underpinning this observation re-
main to be determined. Possibilities include the stimula-
tion of FBPase activity, described above, effects on
another glycolytic enzyme or its effects on the intracellu-
lar signalling cascades that regulate translational pro-
cesses. For example, a reduction in phosphorylation of
the translation initiation factor eIF4E [16] might alter
the rate of mRNA initiation and consequently of protein
synthesis [68]. Although a full picture is not currently
available of the different intracellular mechanisms at play
following carnosine treatment, initial evidence suggests
that both mitogen-activated (MAP) kinase and mamma-
lian target of rapamycin complex (mTOR) may be in-
volved [16]. Our own work in Saccharomyces cerevisiae
supports this idea since we have demonstrated that dele-
tion of TOR1 confers resistance to carnosine treatment
[27]. Further work is needed to decipher how eIF4E
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activities might be regulated in response to carnosine.
The eIF4E binding protein (eIF4E-BP) is of particular
interest as it is known to be regulated by mTOR and is
affected by the well-known anti-tumour and anti-ageing
agents, rapamycin [69] and resveratrol [70].
AGEs, which are formed at an accelerated rate during

normal ageing and in diabetics, have been shown to have
a role in the development and progression of cancers; it
is believed that through interaction with their receptor
(RAGE) they stimulate pro-inflammatory gene activation
and hence oxidative stress [71,72]. We have shown that
carnosine inhibits the formation of AGEs: it can protect
against MG modification [9] and significantly reduces the
formation of protein-crosslinking and oxidative modifica-
tion [59]. The ability of carnosine to prevent AGE forma-
tion has also been demonstrated by others both in vitro
[73-75] and in vivo [48]; the plethora of signalling cascades
activated include NF-κB, MAPKs, PI3K/Akt and the Rho
GTPases. Direct evidence for a role for carnosine and
AGE/RAGE in tumorigenesis is currently missing, but
may provide new avenues of research to inhibit tumour
growth.

Alzheimer’s disease
There is extensive evidence from animal studies showing
that carnosine is a neuroprotective agent [76]. Further evi-
dence suggesting that carnosine might be used to control
Alzheimer’s disease (AD) [77,78] includes its ability to
suppress the toxic effects of amyloid beta towards cultured
cells [79,80] and to inhibit sugar-dependent protein aggre-
gation [81]. Importantly carnosine was found to suppress
the accumulation of amyloid in transgenic mice [82]; the
mechanisms responsible are uncertain but could involve
zinc ion modulation, up-regulation of heat shock protein
expression, and/or enhanced proteolysis of the aberrant
polypeptide. As there is a strong link between type-2 dia-
betes and AD [60], the ability of carnosine to suppress
glycation-related phenomena should also be explored in
relation to AD [59].
Carnosine has been shown to suppress mitochondrial

dysfunction in a transgenic mouse model of Alzheimer’s
disease [82] and is also an activator of carbonic anhydrase
(CA), which is decreased in AZ patients [83]. The activity
of some CA isozymes has been reported to decline in cer-
tain parts of the human brain with age [84] and silencing
of the CA gene, cah-3, in the nematode Caenorhabditis
elegans is reported to reduce lifespan [85].

Parkinson’s disease
Preliminary studies have demonstrated beneficial effects
of carnosine supplementation in PD patients [86,87].
Very recently it was found that in the brains of PD pa-
tients, the substantia nigra (the area subject to degener-
ation in PD), contains up to 3 times more non-specific
cytosolic carnosinase, CNDP2 [88], compared to con-
trols. If carnosine is normally protective in the substantia
nigra, raised cellular carnosinase activity would lower
that protection. This interpretation is supported by the
finding that high glycemic index diets in mice raise MG-
damaged protein levels in the substantia nigra [44]. That
the substantia nigra is particularly susceptible to degener-
ation may derive from the fact that it synthesizes dopa-
mine; it was recently shown that MG can spontaneously
react with dopamine to produce 1-acetyl-6,7-dihydroxy-
1,2,3,4-tetrahydroisoquinoline (ADTIQ), which is found in
brains affected by PD [89]. Importantly, carnosine has
been shown to inhibit ADTIQ toxicity [90]. It is also pos-
sible that carnosine, by scavenging MG, could additionally
inhibit ADTIQ formation. Overall, these findings suggest
that carnosine could possess therapeutic potential towards
PD [91].
Diabetes-related diseases
In type-2 diabetes patients, cataractogenesis [92], diabetic
kidney disease [93] and atherosclerosis are common con-
sequences [94] of MG-induced glycation of proteins, as
well as other cellular dysfunction. It has also been
recognised for some time that there is a relationship, pos-
sibly causal, between type-2 diabetes and AD [60]. A simi-
lar association may exist for type-2 diabetes and other
age-related diseases such as PD [95-97]; again MG could
be a major contributing or even causal factor [98].
As carnosine has been shown to exert protective activ-

ity against protein modification mediated by MG and
other reactive carbonyls, the dipeptide has been explored
for its therapeutic potential towards complications asso-
ciated with type-2 diabetes [99]. Two recent studies have
shown that diabetes-related peripheral algesia (pain) is
mediated by the generation of MG in neural tissue
[100,101]. Carnosine has been shown to possess anti-
nociceptive activity (pain suppression) in mice [102,103],
which could be due to the dipeptide’s ability to react
with MG. Hence it is possible that carnosine could be
one of several therapeutic options in alleviating diabetes-
related pain.
Carnosine administration: overcoming the carnosinase
problem
It is often thought that the presence of serum carnosinase
in humans is an impediment to the therapeutic use of
carnosine [59]; indeed reduced levels of carnosinase in
serum have been suggested to reduce diabetic compli-
cations [104]. However, a number of strategies could
overcome this perceived obstacle. These include using
modified forms of L-carnosine resistant to carnosinase at-
tack (e.g. N-acetyl-carnosine); using an intra-nasal delivery
route to combat neurodegeneration and brain tumours;
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and using N-acetyl-carnosine-containing eye drops, which
could be employed for treating cataracts.

Conclusions
Carnosine appears to have metabolism-dependent effects
on cells and may inhibit ATP production during glycolysis.
Carnosine also appears to facilitate the selective elimi-
nation of aberrant polypeptides and may stimulate the
synthesis of stress proteins, thereby helping to maintain
the proteome. By influencing two fundamental biochem-
ical characteristics of the aged phenotype, energy metabo-
lism and proteostasis, this intriguing dipeptide has the
potential to ameliorate a range of age-related conditions.
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