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Abstract
Background: Occupational exposure to beryllium may cause Chronic Beryllium Disease (CBD),
a lung disorder initiated by an electrostatic interaction with the MHC class II human leukocyte
antigen (HLA). Molecular studies have found a significant correlation between the electrostatic
potential at the HLA-DP surface and disease susceptibility. CBD can therefore be treated by
chelation therapy. In this work, we studied the effect of two complexing agents, nitrilotriproprionic
acid (NTP) and 4,5-dihydroxy-1,3-benzene disulphonate (Tiron), on the fractionation of beryllium
in human serum analysed by graphite furnace atomic absorption spectrometry (GFAAS).

Results: We found the average serum beryllium concentration of fourteen non-exposed
individuals to be 0.53 (± 0.14) µg l-1, with 21 (± 3)% of the beryllium mass bound to the low
molecular weight fraction (LMW), and 79 (± 3)% bound to the high molecular weight fraction
(HMW). The addition of Tiron increased the beryllium mass in the HMW fraction, while NTP was
not seen to have any influence on the fractionation of beryllium between the two fractions. NTP
was, however, shown to complex 94.5% of the Be mass in the LMW fraction. The beryllium GFAAS
detection limit, calculated as three times the standard deviation of 10 replicates of the lowest
standard (0.05 µg L-1), was 6.0 (± 0.2) ng L-1.

Conclusion: The concentration of beryllium or its fractionation in human serum was not affected
by sex or smoking habit. On average, three quarters of the beryllium in serum were found in the
HMW fraction. Of the two ligands tested, only Tiron was effective in mobilising beryllium under
physiological conditions, thus increasing the Be content in the HMW fraction.
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Background
Beryllium, the first of the alkaline earth metals, is natu-
rally found in mineral rocks, coal, soil, and volcanic dust
[1]. Beryllium ore is mined and purified for its use in
nuclear reactors, weapons, aircraft and space vehicle struc-
tures, x-ray machines, as well as telecommunication and
high-tech devices [2]. Occupational exposure to beryllium
may cause Chronic Beryllium Disease (CBD), a lung dis-
order characterised by a granulomatous inflammation ini-
tiated by an electrostatic interaction with the MHC class II
human leukocyte antigen (HLA) [3,4]. Molecular epide-
miological studies have shown that interaction between
beryllium and specific HLA-DP alleles is a factor in disease
susceptibility [5]. Furthermore, molecular modelling has
been used to investigate a potential mechanistic basis for
these observations. A significant correlation has been
found between the risk of chronic beryllium disease asso-
ciated with specific alleles, and the predicted electrostatic
surface potential, suggesting that the alleles associated
with the most negatively charged proteins carry the great-
est risk of beryllium sensitisation and disease [6].

At present, CBD can be treated but not cured. Adrenocor-
tical steroids such as prednisone, prednisolone and dex-
amethasone act to reduce the inflammation and immune
response to beryllium but cannot eliminate beryllium
from organs or tissues, a key factor in stopping CBD [7].
Chelation therapy [1,8,9] or metal encapsulation [10] can
eventually provide an alternative or adjunctive treatment
to accelerate beryllium clearance from organs and tissues.
In this work, we looked at the natural distribution of
beryllium in serum and investigated the effect of two
sequestering agents, nitrilotriproprionic acid (NTP) and
4,5-dihydroxy-1,3-benzene disulphonate (Tiron) (Figure
1), on the distribution of beryllium. We used a mobilisa-
tion index (MI) [11-13] to represent the relative ability of
a complexing agent to compete for the metal of interest
and mobilise it under physiological conditions. The MI is
defined as:

Nitrilotripropionic acid was selected because of its phys-
ico-chemical properties: it complexes beryllium in a tetra-
hedral complex [Be(NTP)]- where the beryllium cation
lies at the centre of a slightly distorted tetrahedron of C3υ
symmetry, with a longer Be-N bond and three equal Be-O
bonds [14]. Tiron is a hydrophilic chelator and was
selected because of its reported efficiency in mobilising
beryllium [15,16], restoring the altered biochemical
parameters [17] and improving the altered hepatorenal
biochemistry and ultramorphology in different rat tissues
and organs [18].

Beryllium, like any other metal ions in serum, can be frac-
tionated into four distinct groups: rigidly bound to metal-
loproteins; loosely bound to other types of proteins
(labile equilibrium); complexed by the so-called low-
molecular-weight fraction (LMW); and occurring as free
(or hydrated) metal ions [12].

In this study, we looked first at the natural distribution of
beryllium in serum and the influence of NTP and Tiron on
this distribution. We focused on two operationally-
defined fractions; the first fraction combines the Be rigidly
and loosely bound to proteins, and is called the high
molecular weight fraction (HMW); whilst the second frac-
tion, that is the low molecular weight fraction (LMW),
combines the Be complexed to the low molecular-weight
fraction or that which occurs in its free ionic form. We sep-
arated the HMW and LMW fractions by ultrafiltration
with Centricon centrifugal filter devices at a 10,000 nom-
inal molecular weight limit (NMWL) cut-off. Beryllium
quantification in serum and serum fractions was carried
out using an optimised graphite furnace atomic absorp-
tion spectrometer (GF-AAS). The accuracy of the analytical
method was tested using Seronorm samples (Seronorm
trace elements whole blood level 2, STEWB; Ref # 201605;
Lot # 0503109).

Results and discussion
Beryllium in serum
The average beryllium concentration in fourteen non-
exposed individuals (9 females and 5 males; 9 non smok-
ers and 5 smokers) found to be 0.53 (± 0.14) µg L-1. Nei-
ther sex nor smoking habit was shown to have a
significant influence on the concentration of beryllium in
serum (independent sample T-test, p > 0.05). The method
detection limit, calculated as three times the standard
deviation of 10 replicates of the lowest standard (0.05 µg
L-1), was 6.0 (± 0.2) ng L-1. The accuracy of the method
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Chemical structures of nitrilotripropionic acid (NTP) and 4,5-dihydroxy-1,3-benzene disulphonate (Tiron)Figure 1
Chemical structures of nitrilotripropionic acid (NTP) and 
4,5-dihydroxy-1,3-benzene disulphonate (Tiron).
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varied from 99 to 104% and was verified by analysing a
control sample (STEWB level 2 certified blood material
with a concentration of 5.9 (± 0.5) µg Be L-1).

Beryllium distribution in serum
On average, 21 (± 3)% of the beryllium mass was bound
to the LMW fraction, with 79 (± 3)% bound to the HMW
fraction (Table 1). Neither sex nor smoking habit was
shown to have a significant influence on the distribution
of beryllium between the LMW and the HMW fractions
(independent sample T-test, p > 0.05). These findings
agree with the work of Stiefel et al. [19] conducted on
human and guinea pig blood. They reported that the cor-
puscular part of all samples contained from 2 to 10% of
the total Be, the LMW fraction contained between 17 and
33%, with 60 to 73% of the total Be bound to the HMW
fraction – or more specifically bound to the pre-albumins
and the γ-globulins fractions. They also reported that the
Be distribution between the two protein regions depends
on the absolute concentration of Be in blood. At concen-
trations lower than 1 µg L-1, most of the Be mass (> 90%)
was bound to the γ-globulins fraction, while at higher
concentrations most of the Be mass was found bound to
the pre-albumins fraction. This is very similar to the chem-
ical speciation of aluminium in human serum, were
almost all the Al mass in the HMW fractions was bound to
transferrin belonging to the γ-globulins protein fractions
[20-22]. Beryllium and aluminium have very similar
chemical properties [1]. In an attempt to better under-
stand beryllium chemistry in human body fluids, Sutton
and Burastero [23] have simulated the speciation of beryl-
lium in plasma fluid (LMW fraction) and reported most of
the beryllium at pH 7.4 to be aqueous BeCO3 (49.4%)
and BeOH+ (39.9%). A reproduction of this speciation is
presented in Figure 2, where in using the chemical equi-
librium software Mineql+ [24] we show that adding cit-
rate and oxalate, should complex most of the Al in the
LMW human serum [20,22,25-27]. We obtained similar
results and found that most of the beryllium at pH 7.4 is
shown to exist as aqueous Be(OH)+ (60.5%), BeCO3
(27.4%) and Be(OH)2 (10.2%). Neither citrate nor
oxalate influenced the speciation of beryllium at serum
pH, although both ligands complexed beryllium at acidic
pH with maxima of 16.2% (at pH = 3) and 9% (at pH =
5.5) for Be(oxalate) and Be(citrate) respectively.

In an attempt to investigate the chelation effect of Tiron
and NTP, as well as study their effect on the repartition of
beryllium in human serum, dose-response experiments
were conducted showing the influence of both complex-
ing agents on the repartition of beryllium between the two
serum fractions. We tested different equilibration times
(2, 4 and 6 h), but found no differences for both ligands,
suggesting that the exchange reactions rates are almost
instantaneous and that equilibrium is reached within the

2 hour equilibration timeframe employed. This is similar
to the Al-transferrin exchange reaction rate with desferri-
oxamine B (DFO) where the addition of DFO increased
the amount of ultrafiltrable Al sharply up to 90% of the
total plasma Al content [28,29]. Due to the similarity
between Be and Al "hard ions", and DFO, NTP and Tiron
"complexing agents with soft oxygen donors", we should
expect almost instant exchange reaction rates for the Be-
Tiron-HMW and Be-NTP-HMW systems, thus confirming
that the 2-h equilibration time is more than enough for
the exchange to occur.

In spiked and non-spiked samples (Figures 3 and 4), Tiron
showed an increasing pattern of the beryllium mass in the
HMW fraction. Such results contradict the general behav-
iour of complexing agents, which usually tend to increase
the metal concentration in the LMW fraction [12,13]. In
the spiked samples, the addition of Tiron increased the
mass fraction of beryllium in the HMW from an average
of 76 (± 4)%, reaching a maximum of 93 (± 2)% at 10-3

M. Conversely, the average concentration of beryllium in
the LMW fraction decreased from 24 (± 4)% to 7 (± 2)%.
This increase in the Be-HMW fraction becomes significant
at 10-5 M (One-Way Anova, Fisher's LSD, with P < 0.05).
We observed the same pattern in non-spiked samples. The
HMW beryllium content increased from an average of 79
(± 3)% to 90 (± 4)% at 10-3 M, while the LMW beryllium
content decreased from 20 (± 3)% to 10 (± 4)%. This
change in the Be-HMW fraction is only significant at 10-3

M. These observations confirm that Tiron complexes Be
under serum conditions and increases the beryllium con-
tent in the HMW fraction by generating a mobilisation
index that decreases with increasing Tiron concentrations
(Figure 5). Tiron complexes Be in a 2:1 ratio [30,31], most
probably generating a less charged complex that tends to
be more soluble in the HMW fraction than in the
hydrophilic LMW fraction. We suspect that such behav-
iour might increase the toxicity of beryllium, but several
recent studies have shown that Tiron (with or without the
aid of adjuvants) restored the altered biochemical physio-
logical parameters and oxidative stress response in rats
exposed to beryllium [15,18,31].

NTP did not show any significant influence on the beryl-
lium partitioning either in spiked or non-spiked samples
(Figures 6 and 7). In spiked samples, the HMW average
beryllium fractionation did not change significantly
(One-Way Anova, Fisher's LSD, with P < 0.05) with
increasing NTP concentration. We obtained a stable pat-
tern that varied from 76 (± 4)% for the control to 77 (±
5)% at 10-3 M. Similar observations were observed in
non-spiked samples. The HMW average beryllium content
pattern varied from 77 (± 5)% for the control to 80 (± 4)%
at 10-3 M. Under physiological serum conditions, NTP
did not influence the MW distribution of Be between the
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HMW and LMW fractions, but showed a capacity to com-
plex most of the beryllium in the LMW, as shown by the
chemical speciation simulations (Figure 8). At a concen-
tration of 10-7 M, NTP was shown to complex 94.5% of
the Be in the LWM followed by 3.4% and 1.1% of the Be
occurring as Be(OH)+ and BeCO3, respectively. These
results support earlier findings which suggest that NTP
would be an ideal complexing agent for Be [14].

Conclusion
Neither sex nor smoking habit was shown to influence
beryllium concentration or its fractionation in human
serum. On average, three quarters of the beryllium in
serum were found to be bind to the HMW fraction. Tiron,
unlike NTP, showed a significant interaction with beryl-
lium under physiological conditions by increasing the Be
content in the HMW fraction – in contrast to that which is
usually observed for standard complexing agents used in
chelation therapy. The addition of NTP did not affect the
MW distribution between the two fractions but was
shown to complex most of the Be in the LMW fraction.
Further work could employ anion exchange fast protein
liquid chromatography (FPLC) coupled with electrospray
tandem mass spectrometry (ES-MS-MS) or inductively
coupled plasma mass spectrometry to confirm the nature
of the ligands or proteins that complex Be in both serum
fractions [20-22,27].

Experimental
Reagents
All of the reagents used were of analytical grade or better.
Antifoam B silicone emulsion (J.T. Baker, NJ, USA),
ammonium hydroxide (certified A.C.S. Plus, Fisher scien-
tific, NJ, USA), ethylenediaminetetraacetic acid disodium
salt dihydrate (EDTA) (Fluka chemika, Switzerland), Tri-
ton X-100 (Acros, NJ, USA), nitric acid (trace metal grade,
Fisher Scientific, Ontario, Canada), beryllium plasma
standard solution (Specpure, Alfa Aesar, MA, USA),
nitrilotripropionic acid (NTP) (MP Biomedicals, Ohio,
USA) and 4,5-dihydroxy-1,3-benzene disulphonate
(Tiron) (Acros Organics, New Jersey, USA).

Solutions
Serum samples were diluted with a Nash reagent (NR)
solution prepared weekly and containing 5% (v/v) nitric
acid, 5% (v/v) of ammonium hydroxide, 0.2% (v/v) Tri-
ton X-100, 0.2% (v/v) antifoam B and 0.5% (w/v) of
EDTA in distilled-deionised water. Solutions of NTP and
Tiron were prepared at 10-1, 10-2, 10-3, 10-4 and 10-5 M by
dissolving the appropriate mass in 2% (v/v) HNO3 aque-
ous solution. A 50 µg L-1 working Be (II) solution was pre-
pared by dilution of the beryllium stock solution (1000
µg L-1) in 2% (v/v) HNO3. The Be standard solution was
prepared daily by dilution of the working Be (II) solution

Speciation of Be in the LMW of serum fluid ([Be] 5.8*10-5 mM; [Ca] 1.3 mM; [Cl] 108 mM; [CO3] 24 mM; [K] 4.2 mM; [Mg] 0.8 mM; [Na] 142 mM; [PO4] 2 mM; [SO4] 0.5 mM; [Cit] 0.1 mM; [Ox] 0.01 mM)Figure 2
Speciation of Be in the LMW of serum fluid ([Be] 5.8*10-5 mM; [Ca] 1.3 mM; [Cl] 108 mM; [CO3] 24 mM; [K] 4.2 mM; [Mg] 0.8 
mM; [Na] 142 mM; [PO4] 2 mM; [SO4] 0.5 mM; [Cit] 0.1 mM; [Ox] 0.01 mM).
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with the Nash reagent to give a final concentration of 0.5
µg L-1.

Sample preparation
Blood from unexposed individuals was collected in BD
vacutaine SST tubes (BD Franklin lakes, New Jersey, USA).
Tubes were left at room temperature for 30 minutes to
allow clot formation and then centrifuged at 500 g for 10

minutes. Supernatants of each individual were collected
and recombined to ensure sample homogenisation. Each
sample was divided into twelve 2.5 mL sub-samples in
borosilicate disposable culture tubes, two served as con-
trols, five were spiked with NTP and five were spiked with
Tiron at concentrations ranging from 10-7 to 10-3 M. Sub-
samples were left to equilibrate for two hours. A 2 mL
aliquot of each sub-sample was transferred to a Centricon
centrifugal device with ultracel YM-10 (10,000 MWCO)
(Millipore Corporation, Ireland) and centrifuged at 4500
g for 90 minutes. The LMW and HMW fractions obtained
were analysed for beryllium by graphite furnace atomic
absorption spectrometry (GFAAS) after respective 2-fold
and 5-fold dilutions with NR. The same experimental pro-
cedure was repeated on serum samples that were spiked
with 1 µg L-1 of beryllium. We also measured the beryl-
lium concentration in fourteen individuals and looked at
the natural distribution of beryllium between the HMW
and LMW fractions. Serum was diluted 5-fold with NR
before GFAAS analysis.

Graphite furnace atomic absorption spectrometer
A Varian AA280Z Zeeman atomic absorption spectrome-
ter, equipped with a Zeeman background correction, GTA
120 graphite tube atomiser and PSD 120 programmable
sample dispenser was used for the atomic absorption
measurement of beryllium at 234.9 nm with a spectral
bandwidth of 1.0 nm. A beryllium hollow cathode lamp
(Varian, Part No. 5610100500) was used as a light source
operated at 5 mA. Pyrolytic graphite coated partitioned
tubes (Varian partition tubes, Part No. 63-100012-00)

Table 1: Concentration and natural distribution of beryllium in 
the human serum of non-exposed individuals.

Sample Sex Smoking Serum (µg L-1) LMW (%) HMW (%)

1 F S 0.54 (0.08) 22 (2) 78 (3)
2 F NS 0.46 (0.04) 24 (3) 76 (3)
3 F S 0.47 (0.09) 19 (1) 81 (1)
4 F NS 0.42 (0.05) 24 (2) 76 (2)
5 F NS 0.49 (0.07) 21 (2) 79 (2)
6 M NS 0.44 (0.02) 25 (3) 75 (3)
7 F NS 0.45 (0.01) 25 (3) 75 (3)
8 F NS 0.44 (0.01) 19 (1) 81 (1)
9 F NS 0.46 (0.01) 24 (3) 76 (3)
10 M NS 0.45 (0.01) 16 (3) 84 (3)
11 M S 0.78 (0.03) 23 (4) 77 (4)
12 F NS 0.69 (0.03) 21 (5) 79 (5)
13 M S 0.45 (0.04) 20 (3 80 (3)
14 M S 0.86 (0.01) 21 (3) 79 (3)

Mean 0.53 (0.14) 21 (3) 79 (3)

F = female; M = male; S = smoking; NS = non smoking

Influence of Tiron on the repartition of beryllium between the HMW and the LMW fractions in three spiked individualsFigure 3
Influence of Tiron on the repartition of beryllium between the HMW and the LMW fractions in three spiked individuals. * Sig-
nificant difference calculated by One-Way Anova, Fisher's LSD.
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Influence of Tiron on the repartition of beryllium between the HMW and the LMW fractions in three non-spiked individualsFigure 4
Influence of Tiron on the repartition of beryllium between the HMW and the LMW fractions in three non-spiked individuals. * 
Significant difference calculated by One-Way Anova, Fisher's LSD.

Mobilisation Index (MI) of Be as a function of Tiron concentrationFigure 5
Mobilisation Index (MI) of Be as a function of Tiron concentration.
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Influence of NTP on the repartition of beryllium between the HMW and the LMW fractions in three spiked individualsFigure 6
Influence of NTP on the repartition of beryllium between the HMW and the LMW fractions in three spiked individuals. * Signif-
icant difference calculated by One-Way Anova, Fisher's LSD.

Influence of NTP on the repartition of beryllium between the HMW and the LMW fractions in three non-spiked individualsFigure 7
Influence of NTP on the repartition of beryllium between the HMW and the LMW fractions in three non-spiked individuals. * 
Significant difference calculated by One-Way Anova, Fisher's LSD.



Chemistry Central Journal 2008, 2:10 http://journal.chemistrycentral.com/content/2/1/10
were used for all experiments. High purity Argon
(99.99%) was used as the carrier gas. A beryllium hollow
cathode lamp (Varian, Part No. 5610100500) was used as
a light source. Instrument control, sample results, signal
graphics and data collection are controlled by the Spec-
trAA Worksheet software for the Windows® XP operating
system. Peak area values were used for beryllium signal
and background (BG) measurements. The instrumental
conditions and the furnace program are listed in Table 2.

Chemical Speciation
For the chemical speciation calculations, we used
MINEQL+ (version 4.5 for Windows – Environmental

Research Software, Hallowell, ME), a chemical equilib-
rium modelling system that can be used to perform calcu-
lations at low temperatures (0–50°C) and low to
moderate ionic strength (< 0.5 M). MINEQL+ operates
over three steps: creation of a system by selecting chemical
components from a menu with the possibility of adding
new ligands, then scanning the thermodynamic database
and finally running the calculations with actual measured
concentrations included. The output data module yields
the activity for each species of each component. Our
chemical speciation calculations were made assuming the
following parameters (unless specified otherwise): T =
37°C (fixed), ionic strength: I = 0.01 M (fixed), Log pCO2
= -3.5 (open atmosphere). Different chemical equilibrium
software should yield similar results when the same stabil-
ity constants are used. The following input data were
added to the MINEQL+ thermodynamic database; Log
KBe-Ox = 3.47, Log KBe-(Ox)2 = 5.24, Log KBe-NTP = 13.94, Log
KH3-NTP = 11.54, Log KH2-NTP 

-1 = 10.31 and Log KH-NTP 
-2 =

7.59.

Statistical analysis
Statistical analysis was performed with SPSS (version 13
for Windows, SPSS Inc, Chicago, IL) using independent
sample T-tests to monitor significant differences among
groups. We also used One-Way ANOVA tests with Fisher's

Table 2: The furnace programme for the determination of 
beryllium in serum.

Step Temp (°C) Time (s) Argon flow rate (L min-1)

Drying 85 5 0.3
Drying 95 30 0.3
Drying 120 20 0.3

Pre-pyrolysis 450 22 0.3
Pyrolysis 1000 17 0.3
Atomizing 2900 3 0
Cleaning 2900 2 0.3

Influence of NTP on the speciation of Be in the LMW of serum fluid ([Be] 5.8*10-5 mM; [NTP] 10-4 mM; [Ca] 1.3 mM; [Cl] 108 mM; [CO3] 24 mM; [K] 4.2 mM; [Mg] 0.8 mM; [Na] 142 mM; [PO4] 2 mM; [SO4] 0.5 mM; [Cit] 0.1 mM; [Ox] 0.01 mM)Figure 8
Influence of NTP on the speciation of Be in the LMW of serum fluid ([Be] 5.8*10-5 mM; [NTP] 10-4 mM; [Ca] 1.3 mM; [Cl] 108 
mM; [CO3] 24 mM; [K] 4.2 mM; [Mg] 0.8 mM; [Na] 142 mM; [PO4] 2 mM; [SO4] 0.5 mM; [Cit] 0.1 mM; [Ox] 0.01 mM).
Page 8 of 9
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LSD (least significant difference) to make pair wise com-
parisons as a way of monitoring significant changes
within a group.
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