Email updates

Keep up to date with the latest news and content from Chemistry Central Journal and Chemistry Central.

Open Access Highly Accessed Research article

Synthesis, antifungal and antibacterial activity for novel amide derivatives containing a triazole moiety

Ruping Tang12, Linhong Jin12*, Chengli Mou12, Juan Yin12, Song Bai12, Deyu Hu12, Jian Wu12, Song Yang12 and Baoan Song12*

Author Affiliations

1 State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China

2 Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, 550025, China

For all author emails, please log on.

Chemistry Central Journal 2013, 7:30  doi:10.1186/1752-153X-7-30

Published: 12 February 2013

Abstract

Background

Plant fungi (e.g., Pellicularia sasakii, Gibberella zeae, Fusarium oxysporum, and Cytospora mandshurica and Phytophthora infestans) and bacteria (e.g., Ralstonia solanacearum) are extremely difficult to manage in agricultural production. The high incidence of plant mortality and the lack of effective control methods make P. sasakii and R. solanacearum two of the world’s most destructive plant pathogens. Pathogenic fungi and bacteria are responsible for billions of dollars in economic losses worldwide each year. Thus, we designed an active amide structure and synthesized a series of novel amide derivatives containing a triazole moiety to discover new bioactive molecules and pesticides that can act against fungi and bacteria.

Results

A series of amide derivatives containing a triazole moiety were synthesized. All the obtained compounds were characterized through proton and carbon nuclear magnetic resonance spectroscopy, infrared spectroscopy, and elemental analysis. Preliminary antifungal activity test showed that some of the synthesized compounds exhibited moderate antifungal activity against P. sasakii, G. azeae, F. oxysporum, C. mandshurica, and P. infestans at 50 mg/L. Compound 4u displayed more potent antifungal activity against P. sasakii and G. azeae than hymexazol. Preliminary antibacterial activity results showed that some of the synthesized compounds exhibited high anti-bacterial activity against R. solanacearum at 200 mg/L. Compounds 4m and 4q displayed high antibacterial activity against R. solanacearum, with 71% and 65% inhibitory rates, respectively.

Conclusions

A series of novel amide derivatives containing 1,2,4-triazole moiety were synthesized through the reaction of intermediate 3 with different acyl chlorides and anhydrous potassium carbonates in anhydrous tetrahydrofuran at 50°C, using 2,4-dichloroacetophenoneas as a starting material. The title compounds exhibited high inhibitory effects against P. sasakii, R. solanacearum, and G. azeae.

Graphical abstract